Foam structure of Microcellular controlled by process conditions and material design

Toshitaka Kanai, Gensei Teramoto, Haruhiko Ae, Yasuhiko Otsuki
Plastics Technical Center, Idemitsu Kosan Co., Ltd.
1-1 Anegasaki-kaigan, Ichihara, Chiba, 299-0193, Japan

Abstract
We investigated the foaming control factors of microcellular process in terms of forming conditions and material design, and this paper describes the foam morphology of the samples prepared on various processing conditions and materials for mainly PP.
If we choose the optimum condition carefully, the foam size can be controlled about 30 μm and the distribution of cell size is uniform.

Introduction
The Mucell Technology which produces the small cell size foam by using supercritical fluid such as CO₂ and N₂ is expected to obtain good physical properties, good dimensional stability, good flowability and reducing warpage. The cell size is one of the important factors to control the physical properties, the surface appearance and very much influenced by process conditions and materials.

By optimization of a processing condition and a material design, MuCell technology gives potentialities of forming a homogeneous and microcell-structure. For example, long chain branching PP with special additives give better cell size uniformity and smaller cell size compared with general PP. Further, the addition of foam nucleus and using core back process are control factors.

Microcellular has good merits such as dimensional stability and reducing warpage and shrinkage, especially for glass fiber filled materials with random dispersion fibers observed by using this technology.

There are very few reports which describe the cell size control factors for injection moldings. This research is to obtain the main factors of the cell size control for injection molding in terms of process conditions and materials. We chose the polypropylene which is difficult to obtain the small cell size.

Experimental
MuCell machine J180EL III (180ton, JSW) was used.

Results & Conclusions
Using supercritical nitrogen (N₂), we investigated polypropylene foaming by MuCell process in order to grasp the most influential molding factors for minute foaming with design of experiment. It was found that the most influential molding factors for MuCell process were the Δ P (the differential pressure between injection pressure of supercritical N₂ to cylinder and back pressure of screw), throughput of supercritical N₂ to injection molding machine from supercritical fluid delivery system and resin temperature (Fig.2 & 3, Table1). Consequently, the average diameter of foaming cell was achieved 30 μm for foamed polypropylene which is generally difficult to control the cell size (Fig.4 & 5). In terms of
material, nucleating agent is also important factor for reducing the cell size.

Fig.2 Relation between molding factor and contribution rate

Resin temperature 235°C

Resin temperature 200°C

Fig.4 SEM micrographs of polypropylene foaming at various temperatures

ΔP = 3 MPa, throughput of SCF = 0.5Kg/h

ΔP = 2 MPa, throughput of SCF = 0.25Kg/h

Fig.5 SEM micrographs of polypropylene foaming by various SCF condition

Fig.3 Relationship among maximum cell diameter, ΔP and SCF throughput

Table 1 Relation between molding factors and foaming morphology

<table>
<thead>
<tr>
<th>Order of contribution</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum cell diameter</td>
<td>ΔP・Throughput of SCF</td>
<td>ΔP・Rate of weight reduction</td>
<td>Rate of weight reduction</td>
</tr>
<tr>
<td>Contribution rate</td>
<td>0.298</td>
<td>0.214</td>
<td>0.150</td>
</tr>
<tr>
<td>Rate of area</td>
<td>Injection rate・Resin temperature</td>
<td>ΔP・Rate of weight reduction</td>
<td>ΔP・Throughput of SCF</td>
</tr>
<tr>
<td>Contribution rate</td>
<td>4.13</td>
<td>3.79</td>
<td>3.25</td>
</tr>
<tr>
<td>Distribution2</td>
<td>Resin temperature・Rate of weight reduction</td>
<td>ΔP・Throughput of SCF</td>
<td>Injection rate</td>
</tr>
<tr>
<td>Contribution rate</td>
<td>0.258</td>
<td>0.228</td>
<td>0.196</td>
</tr>
</tbody>
</table>

References